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1 INTRODUCTION

The research discussed here will examine some important problems of synthesis of

digital systems. In particular, the focus will be on some specific design decisions which

' produce a register-transfer hardware implementation of & digital system with near

-
-

optimal speed under certain design constraints and desired optimization goals. We will

also consider optimizing the speed of an already designed system by reconfiguring the

v'-".;'{l',l’(' ‘

interconnections of the hardware modules. The discussion which follows will start with a
brief overview of high-performance control styles of digital systems and then focus on the

area of speed optimization of digital systems with centralized controllers.

1.1 Speeding Up Digital Systems
Although there are many styles and variations of techniques for high performance
digital systems control, they can be classified as following two basic concepts:

e distributed processing under asynchronous distributed control

.:u,\'.‘v{"l (v ” " ]

e overlapped (parallel) processing under centralized control

—

The former class includes digital systems with multiple autonomous control sequencers

AL

, such as multi-microprocessor systems, VLSI circuits with multiple autonomous control

pov T,

-8
-

modules and interfaces (e.g., a UART with separate sequencers for receiver and

4

transmitter). The latter class includes systems or modules with only a single centralized

NG N

controller. Any system belonging to the first class can be partitioned into subsystems

CARR RS

and/or modules each of which can be classified under the latter class, although there are

/
O

s
=,

several complex control partitioning problems which must be addressed. The overall
speed of such a distributed processing system will be determined as a function of the
speed of each partitioned subsystem and/or module. Accordingly, we will focus our

discussion on the latter case, overlapped processing under centralized control.

g 1.2 Two Sequencing Levels of a Digital System

n In digital systems with two-level control structures, sequencing is carried out in two

levels, the macro and miero levels. An execution instance of a machine instruction or a

-

‘ major loop of an f.s.m. (macro task) corresponds to a macro cyecle and an execution VS
) has
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instance of a microinstruction or a state of an f.s.m (miero task) corresponds to a

-

micro cycle, which are carried out by a macro engine and a micro engine,

respectively. Most Von Neumann type computer CPU's and simple digital systems have

a two-level control structure. In most digital systems whose control structure has more g
than two levels, we can also find similar levels of sequencing corresponding to the macro
and micro levels. For such a system, by properly merging levels of sequencing, we can ™
- ..‘,
also partition the sequencing of the system into two levels similar to the macro and =
micro levels. ! Figure 1 shows an example of a microprogrammed computer CPU. 3
‘.
MACRO ENG INE -
VoTTTTEmm T - ;;
i ' ODATA PATH -
: ] &
N NAR rc '
: A Y ; -
! \_Adde nyx ; ' I e
' ' Control Signals ’'y
: wain R R S N
JR I i i
B E | Decoder Decoder I
: Next Instr. : I 1 ' > |
: Register AR e Controt . - ! .': |
[ ~Address - r ! ! i
, — i ! g um:’ : Seore . . ! ¥
: Current Instr ! |
' fagister " '
; e e
M e emcemeccecemceaeaa- - MICRO  ENGINE o
Figure 1: Sequencing Engines of a Digital System :
o
Macro cycles consist of sequences of one or more micro cycles. Overlapping macro f
ot

cycles are implemented by proper partitioning of macro cycles into sequences of micro

cycles. For ezample, an operand needed by the current macro cycle could be fetched

>

during some micro cycle of the previous macro cycle and some micro cycle of the

' . ’

current macro cycle may fetch the next macro cycle in advance. "
(l

’

lFor 3 nano-programmed CPU such as the Nanodata QM-1, nanoinstruction cycles can be considered as

the micro cycles, and microinstruction cycles and machine instruction cycles can be merged and considered -~
as the macro cyvcles of our classification. o
3
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A micro cycle consists of minor cycles. Each minor cycle reads, transforms and stores
data and/or control values from storage elements to storage elements which are used to
buffer the flow of the values between functional elements. Such buffering storage
elements are called stage latches. For the micro engine of figure 1, 4-PC, »-DRI,
, #-DR2 and *Cond. Latch® can be considered to be stage latches. In general, any storage

element in the system can be a stage latch.

1.3 Overlapped Execution in Micro-level Sequencing

- At the macro level, various techniques for speeding up digital systems exist. Examples

are instruction look-ahead [25], stack architectures [32] and dataflow machines [13].

"

L

However, the ultimate performance of these speed-up techniques will depend very much
on good sequertcing control schemes at the micro level, since each macro-level task is

0 eventually implemented by micro cycles.

4

At the micro level, execution overlap is achieved by overlapping the execution of minor
cycles of multiple micro cycles. As shown in Figure 2-(a), simple overlap is often used in
small computer CPU’s. As data path cycles overlap (b and ¢ of Figure 2), overlap within
functional units can also be used (e.g., the pipelined multiplier of the IBM 360/91).

) Possible places where micro-level overlap can be achieved are:

1. between stages of the micro engine
2. between the micro engine and the data path

» 3. between the data path stages

Figure 2 shows timing examples of micro cycles. Case (b) corresponds to the digital
system of Figure 1, where, for a microinstruction i, the minor cycles Iil, 1i2, Ii3 and li4
, start by clocking u-PC, 4-DR1, 4-DR2 and *Cond. Latch®, respectively. If there is no

conflict in stage usage and no branches are executed, the maximum execution speed of a
N micro engine is determined by the longest interstage propagation delay (which is the
minimal possible clock period) as in static pipelines without loops. Of course, the actual

interstage propagation times depend on the number and length of the clock phases.

......... N N A A A T e e A e e Y T N W T
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I1]) : j-tb mimor cycle of micro cycle i.

| )
I [--=-memee- |e=eemcnoa- |
control | (branching) 121 122 g
flow ! Jemmmmmeem- l=mmmmmeeen I
I 131 132
i fomommooeen [emecoemenun | vy
e i At n e D S LD DI LT L TP E LT DR > time v
(a) Conventional 2-stage scheme with 2-phase clock .,
control | T11 I12 113 114 o)
flow | [--=-l---|--==]--=-- | 'i
I (branching) 121 122 123 124
I R R e | o
| 131 132 133 134 é
| |===sfoen]oeen]-m-- | :
e i bbbkt bbb bR e L > time -
(b) 4-stage scheme with 2-stage data path (aeeds 4-phase clock) "
Ot
L
control | [I11 112 I13 I14 115
flow | |---<l<=-]====|==-]|--] "
| (braaching) 121 122 123 124 125 t:;
I R Rt Rt B Rl
| 131 132 133 134 135 ,
| [====l===]=oen]==]--] o
D it ettt > time
(c) 5-stage scheme with 3-stage data path (meeds 5-phase clock) <
LS
jag
Figure 2: Examples of Micro Cycle Sequencing (Gantt Chart) :‘.

B2

As shown in Figure 2, a branch delays fetch of the next micro cycle until the earliest

fetch clock phase after the completion of the branch. Accordingly. the time delay due to

(WA

a branch is a function of the execution time of the branch and the clock period. In other
words, overall performance of the micro engine also depends on the sequence of micro

2
cycles to be executed. g
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Resource conflict and data dependency are other factors reducing the advantage of

execution overlap. For example, two microinstructions, I, and I are executed

i+’
consecutively and each has three microoperations (data path cycles), as follows:

1. 1

i i+1
I“: C <-- MDR NEXT Ii+l,l: C <-- Ds2 NEXT
Ii2: A <-- B + C NEXT li+l,2: C<--C+ 2 NEXT
' Iis: A <-- Ae2 Ii+l.3: E<--C+D

: L., , bas a data-dependency relation with I;; and L, [11]. It also has a resource conflict

(assuming only one multiplier) with I.;. Thus L cannot start execution until all the

i+1,1
» data path cycles of I, complete. These examples can also be found in pipelines with loops
[27]. Forbidden latencies of a pipeline are determined by resource conflicts between
tasks and loops are major contributors to them. These problems slow down the
execution speed as well as increase the complexity of the control circuitry. Similar
problems arise in various levels of most digital designs [36, 23]. The higher the level, the
harder the analysis and the higher the control cost. At the micro sequencing level, these
problems can be analyzed in a formal way using a graph theoretic, algebraic

methodology, which will be proposed by this research proposal.

1.4 Overview of the Research

In this technical report, we consider speeding up digital systems with centralized
control at the micro level. The main objective of the research is to achieve maximal

performance increase with minimal hardware cost and design effort.

Among the most costly and time consuming tasks at the early stages of data path
design are module selection and allocation, which select functional and storage elements
and assign functions and values to them. Also, during or after the module selection and
allocation phases, control is synthesized, involving the synthesis of either a
microprogrammed or a hardwired sequential machine. When near optimal design is
required, all these tasks are computationally intractable (we will discuss this in Section
2.1). Furthermore, once all these tasks are completed, any non-trivial change in either
control flow or data flow may require almost the same effort as the initial design.

Naturally, we can think of the following two fundamental questions:




.'-'.:"."-"J. .l
.

1. During the module selection and allocation phases of the data path design
(assuming a fixed control sequence), how can we efficiently estimate and
compare the performance of alternative decisions?

2. For a completed design, how can we increase the performance of the system
at minimum hardware cost and minimum design and/or design change time?

The main goal of this research is to develop a methodology which can answer these
questions at the micro level of digital systems. Obviously the emphasis of the speed-up
techniques to be developed will be on minimizing the change in the control and data flow

of a given partial or complete design.

If new operators are to be added to speed up the execution, both the data and control
flow must be altered to get the maximum advantage of them. Also additional storage
elements are often required in order to store the intermediate results which may exist in
parallel. Thus, the task will involve almost the same amount of work as the initial
design. For example, adding a new ALU for speed-up often requires rewriting the
microprogram as well as changing the value allocated to the operand and/or result
registers, which automatically involves changing the interconnections for both the data
flow and control flow. In order to avoid such costly and time consuming iterations, we
consider adding or reconfiguring only storage elements, which can be done without
altering the basic structure of the original control and data flow and thus is considered
to be transparent to the data flow and control flow analyzer. Assuming that the control

sequence of the micro cycles is fixed, we consider two basic approaches to the problem:

1. For a set of chosen and allocated functional modules (for both the data path
and the micro engine), add and connect minimal number of storage elements
necessary to achieve a certain level of performance.

2. For a completed design, add certain number of storage elements to the data
path and/or micro engine in such a way that the performance increase will be
maximized by virtue of maximum execution overlap of the micro cvcles.

In any case, we try to maximize execution overlap of the micro cycles considering the
time overhead due to branches, resource conflicts and data dependency relations.
Maximum execution overlap can be achieved by svnthesizing an optimal clocking

scheme. which involves the following tasks:
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e optimal assignment, relocation, addition or deletion of the stage latches

e choice of an optimal clock period and the number and lengths of the clock
pbases Y

k e optimal clock signal gating and routing.
r In carrying out these tasks, we formulate the problem as a graph theoretic problem.

Digital circuits are modeled by directed graphs which show the pathways of the data and

t control flow. By properly weighting the vertices and the directed edges, we can model

the execution sequences of the micro cycles as tours on the graphs. Also, the time taken
r at each segment of the tours can be computed easily. Assigning and/or inserting overlap
}' stage latches can be modeled as finding multiple edge-cut sets. Once the locations of the
E stage latches are determined, then the optimal clock period and clock sequence can be

i computed considering the synchronization overhead discussed before.

Chapter 2 gives motivation for the research and discusses previous work. The problem
formulation is given in chapter 3. Chapter 4 presents the clocking scheme synthesis
results. In Chapter 5, the result of static clocking scheme synthesis will be
demonstrated. In the example in Section 5.1, the micro cycle time of a u-programmed

CPU is shown to be sped-up significantly.

...........
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2 MOTIVATION AND BACKGROUND N
In this chapter, we discuss the general design environment of clocking scheme synthesis. u
A brief overview of the general digital design problem is followed by the definition of the o
task, clocking scheme synthesis. We also define the speed of digital systems, which g
will be used to evaluate the performance of clocking schemes and ultimately of digital
systems. We conclude this chapter by postulating the necessity and importance of a good g
design methodology for clocking scheme synthesis. ’
&
2.1 The General Digital Design Optimization Problem
The general digital design problem is that of producing a hardware implementation of :Zj
the system which exhibits a required behavior and satisfies any constraints imposed on it. -
Among the most typical design constraints are minimum required speed and maximum ;
allowed cost and power consumption. Common optimization goals are maximizing speed
and minimizing cost and power consumption within the constraints. Unfortunately, these
optimization tasks often compete with each other. For example, the minimum cost .
implementation will rarely be the maximum speed implementation. For this reason, rg
desired design goals are often used in addition to constraints in order to direct the
optimization process towards a certain direction. Whenever there is more than one E .
noninferior design alternative, the one that best meets the desired goals will be chosen.
Examples of desired goals are to maximize speed, to maximize speed-to-cost ratio and to ?
maximize speed-to-power consumption ratio. ’
R
Use of desired goals makes the design decision process unambiguous and efficient. a

Then, the synthesis task can be partitioned into subtasks as listed below, which will

iterate and proceed towards the direction guided by constraints and desired goals:

v S BT.00 00

1. Choose an appropriate design style (design style selection) "e
2. Choose potentially optimal sets of functional and storage modules which can 3
maximize speed and minimize cost and/or power comsumption (module ;_\ N
selection). ":q‘
.
N I
3. Allocate operations and data values to functional and storage elements. E l
Partial interconnection may also be carried out (resource allocation). T
RN
N ':‘u
3
av
LN
R
N
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4. Find an optimal configuration and/or interconnection of modules so as to
maximize performance. Detailed control hardware and/or microprogram are
also synthesized during this phase (con figuration and interconnection).

5. For a given design which is non-optimal, find a near-optimal reconfiguration
of the design within an allowed cost increase or speed decrease limit
(per formance increase or cost reduction by recon figuration).

In cases when near optimal solutions are desired, the complexity of these tasks is in
decreasing order, since the solutions for the earlier phase problems can only be
guaranteed to be optimal after a large number of (in worst case, all possible) solutions for
the later phase problems are compared. Unfortunately, finding optimal solutions even for
some of the later phase problems is known to be intractable. For example, the resource
allocation problem can be modeled as a job shop scheduling problem, which is known to
be NP-hard [21]. Also, as a subproblem of phase 4, the microcode compaction problem
has been proven to be NP-Complete [37). Many other problems with exponential
complexity in various design phases have been identified (6, 38]. Only several problems

of the last phase turn out to be polynomial time solvable {14, 30, 31].

In essence, synthesis tasks are carried out by estimating and evaluating cost and speed
of feasible hardware implementations of the system at various stages of the design
process. Naturally, in order to carry out these tasks efficiently and to get a near optimal
design. a good estimation and evaluation strategy is crucial. Especially, in the last two
phases. it is desired that the speed estimation and evaluation procedures be able to

suggest possible changes in the given design which can increase the speed.

2.2 Definition of the Clocking Scheme Synthesis Task

As we have seen so far, the digital design problem is known to be computationally
intractable. As one way of reducing complexity, synthesis of digital systems is usually
partitioned into data path synthesis followed by control synthesis (this is true for both
automated design systems (34, 15, 41) and buman designers). In such design procedures,
clocking scheme synthesis is constrained by both the data path design and the control
design. Clocking scheme synthesis is carried out as one of the last tasks of control

svnthesis. For a given data path design and a control hardware design. the task of

clochking ~cheme synthesis is as follows:
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e choose an optimal clock period 2
¢ determine an optimal number and length of the clock phases a

o assign clocked control signals to clock phases and route to the data path

T,

However, most of the important parameters determining the execution speed of digital

278

systems are fixed during the data path and control design. Thus, optimality of the design

can be guaranteed only if clocking scheme synthesis is done concurrently with both the

8
-

=

data path design and other parts of the control design. For example, cheaper data path

designs often require more elaborate clocking schemes and therefore a final solution to

-
*w
o
the data paths cannot be chosen until the clocking cost is examined (and indeed, until o
the entire cost including control is examined). In this research, we shift the occurrence \
. . . . "
of clocking scheme synthesis to somewhat earlier phases of the design procedure in order L
to synthesize near-optimal digital system:. We define the task and goals of clocking C"'
.
scheme synthesis as follows: e
INPUT i
(i) Partial data path and control design with chosen functional units and
minimum required storage elementsz, Is
(n) Types of micro cycles (e.g., microinstruction formats or Node-Module-Range i
bindings [26], which specify the direction and propagation time of data values -
through functional elements during micro cycles) and .
'\_
(iii) Expected sequences of micro cycles to be executed. -
3
CONSTRAINTS i
(1) Minimum execution speed of the micro engine, :.‘ |
o
(1) \Maximum number (or total bit width) of storage elements and "
>
2For any data path. the minimum number of storage elements is determined by the maximum pumber ‘-:
of live values [2] at apy time. In most cases of computer CPU designs, the registers (e.g.. ACC, MAR, and &
I/O buffer) and the main memory which the machine language programmer cap directly access are the
mioimum set ~f ctorage elements. For control bardware. it can be either the y-PC or the microinstruction Y
register :‘
‘
G N e T S S e e e S e R,
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) (iii) Maximum number of clock phases.
OUTPUT
(1) Assignment, insertion or deletion and interconnection of storage elements

necessary to obtain a certain execution speed (or speed to cost ratio),

(i1) Minimum and optimal (not necessarily distinct) clock periods to maximize the
execution speed,

(iii) The optimal number and length of clock phases and

(iv) Clock signal routing to stage latches.

We consider three cases of partial data path designs. The first case includes designs

A A s o
“hanons | |

-

which have not been completed yet and need more storage elements to be allocated and

connected in order to satisfy the machine behavior. The second case includes designs

which have already been completed and only the connections from and to the storage

elements are partly or completely undone for the purpose of reconfiguration of the

-
-

o

r RN

interconnections. The third type includes completed designs as they are. For completed
designs, we may need to add or delete storage modules in order to increase performance
at minimum cost or to decrease cost at minimum sacrifice of speed. In any case, the

objective of the clocking scheme synthesis task is, while satisfying all the design

o
1]
L]
-
w\
v
A
—

constraints and desired goals, to maximize the execution speed of the system by
optimally configuring, adding and/or deleting storage modules optimally and

consequently determining an optimal clock period and number of clock phases.

There is no absolute ordering in carrying out these tasks. The result of each task may
affect the results of one or more of the others. For example, choice of an optimal clock
period and determination of the optimal number of clock phases depends on the result of
optimal stage partitioning. Also, the maximum allowed number of clock phases (due to
clock generator cost and/or clock signal routing complexity) will affect both the choice of
an optimal clock period and optimal stage partitioning. For this reason, a unified
solution methodology is strongly desired in order to ezamine the attributes of all the

design decisions in parallel.

’
o, ¥, o X < R AT AT (T Y g LA S E A O TR R P R LA RO TR PR TR R P WY
[ )\,. RN \.n P u .' At S, e e . o a -_jf;'l ¢ :'{ :*;'.'g';."’ :& ;_'f;xi“;‘. LU UN PR VR 4 ;‘5.'_&'_5".’.'_5".&'_\
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2.3 Definition of Speed of Digital Systems

As mentioned in the first chapter, the system tasks (processes or programs) consist of
sequences of macro tasks, each of which cousists of one or more fixed sequences of micro
cycles. Therefore, execution times of system tasks can be determined by the execution
sequences of their micro cycles and the execution time of those sequences. In this sense,
the execution speed of the micro engine can represent the execution speed of the system.
There are several ways of defining the execution speed of a micro engine of a digital

system for performance evaluation:

1. maximum possible execution speed
2. execution speed for certain micro cycles

3. execution speed for a (weighted) average mixture of micro cycles

The first two parameters are not realistic since they do not encounter an actual
mixture of the micro cycles. The third parameter, which is an overall performance
measure of the system, can be computed by assuming the average mixture of micro
cycles over a long enough time period. The total estimated execution time divided by the
number of micro cycles executed will be the average expected execution time of a micro
cycle. Appropriate weighting functions may be used to indicate the average occurrence

and/or importance of each micro cycle.

2.4 Previous Work

Since the task of high-level (functional level) digital design automation was launched
more than a decade ago [10], there has been a vast amount of effort in automating
various components of the digital design such as design style selection (40, 29], data path
design [22, 39, 18, 20|, microprogram synthesis [1, 35, 33], and integrated design
automation systems [34, 15, 41, 16]. However, there has not been much work in the area
of clocking scheme synthesis except that done for pipeline control, which can be
considered to be a special case of general clocking scheme synthesis. As we have
discussed before, the clocking scheme synthesis task is important in optimizing the speed
of digital systems and must be carried out together with the data path and control

design. However, it has been either buried under architectural design [34. 15, 41, 16}, or
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3 assumed a priori, as a part of the control design 5, 24, 33, 3] or data path design [18]. In N
some cases, clocking scheme synthesis alone is carried out for already completed designs '
(12, 30, 31]. Among them, we will briefly discuss several which are most closely related ‘;';:
" to this research. o
L
2.4.1 Related Work in Clocking Scheme Synthesis :
Recently, as one of the projects closest to our research, Leiserson [30, 31] proposed a £

¥ v a

AN

technique which determines a relocation of the registers of a given data path in order to

: minimize the clock period. The data path is modeled as a directed graph where the %)

vertices represent functional modules and the directed edges represent interconnections. N
, The locations and the number of registers are indicated by the edge-weight. The basic N"

assumption of this technique is that all the hardware modules are performing useful :'
2 operations at any time and thus all the registers are clocked at the same time by a single )
. clock source (e.g., a systolic array). The technique moves the registers of the original Y
X design along the direction of the Jata flow. If the movement is to be made onto any :}

forked® edges, registers are copied to all of the fork-edges in order not to change the "
. original data flow. The optimal relocation of registers is determined as the design in =
y which the longest propagation delay between any two registers is minimized, which

minimizes the clock period. The major contribution of this work is that it suggests

(A AGHA

several formal tools for timing analysis of digital circuits, which are the graph model of

v

the digital circuit and the problem formulation using linear and/or mixed-integer linear .-
programming. There are several shortcomings of this technique to be used in general e

cases of digital systems speed-up. They are: e
o The technique assumes fixed clocking for all the registers at the same time o

o The technique assumes fixed data flow for all time ;

\

e Control hardware timing is not considered o¥

o Register propagation delays are ignored -

2
e

6t
=

310 this model, all the forks are AND forks since every hardware module is performing useful operations :.'.:\
and thus all the interconaections are carrying useful data values. .:'\
AR
R
BN
» -:.\
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¥ Boulaye [5] discusses speeding-up pipelined micro engines by minimizing the time

overhead caused by the conditional branches, which is accomplished by clocking the

vl

condition latch as early as possible. This approach can also be considered as relocation

of registers to reduce the critical path or the critical stage of a pipeline. However, if the

R | Wy e

(=2

propagation delays of both the data path stages and the stages of the micro engine are

not ponsidered together, optimal relocation cannot be determined. Also, in any -

d instruction pipeline, any branch causes resynchronization overhead, which also involves Rt
the termination and re-initiation of the data path stages. %,
Andrews [3] considers using a multiphase clocking as one way of reducing the number =

of microinstruction fetches from a slow microprogram storage. By using a multiphase -

clock, microinstructions can be horizontally coded and executed serially in several clock @

phases without having an expensive data path. As he mentions, the performance of this

technique depends on the coding efficiency of the horizontal microprogram. If the

L am e o - g o g
O

microinstructions are sparsely coded, then the resource utilization efficiency will be low.

Also, after the completion of a microinstruction which has only the microoperations with h
‘ short execution times, there will be idle time until the fetch cycle of the next

microinstruction. This is true for any microprogram (vertical or horizontal) if execution
overlap is not used. However, if execution overlap is used, this is not always true since in
case of overlapped execution, the execution speed of the micro engine depends much
more on the longest microoperation execution time rather than the total execution time
span of the microinstructions. Moreover, if execution overlap is properly used, vertically
coded microinstructions can be executed as fast as horizontally coded ones. This saves a

significant amount of design time and avoids the complexity of horizontal microprogram

Y |

£ ¢

compaction, which is known to be intractable [21, 37].

A\

"n 'L’ -’\’ A '.L'
ARG A e A A AR A i Sl ettt

As another approach, Berg [4] characterized the timing behavior of a given control and

clocking scheme in order to provide a guideline for the synthesis of a fast and correct N
microprogram. The timing behavior of a controller at the macro level is modeled as a - J
finite state machine. The model allows multiphase execution of micro-instructions. SN
However, the model is focused on modeling the timing of the interactions between main a '
system blocks such as the CPU, main memory, and I/O controller.

o-’.“,
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I Davidson et. al. [12] suggested a formal technique to analyze and determibe the
| reservation table for the sequencing of pipelined data paths with loops. The state of the
pipeline is modeled as a finite state machine where each state represents the utilization

of the pipeline stages. This reservation table technique is extensively used in general
pipeline designs. We believe that this technique can be easily extended and used to

analyze a multiphase clocking scheme for general multistage digital systems.

General insight into control architecture for pipelined systems is discussed in depth by
1 Kogge [27) and Ramamoorthy [36]. Basic clock timing requirements for pipelined data
paths are analyzed by Cotton [8]. A technique for performance measurement of static

pipelines is proposed by Lang [28], which uses a table-driven simulation model.

2.4.2 Other Related Work

The basic concept of execution overlap under a centralized control originates from the
: look-ahead [25] techniques at the macro (machine instruction) level. Examples of
machines which implement macro level execution overlap include the CDC6600, and the
IBM 360/91, 195 and 370/185. They assume that instruction fetch, decode, and execute
cycles, each consisting of a sequence of micro cycles, take almost equal time, which is the
basic assumption of general pipelines. Possible execution overlap is predicted by
checking the type and execution status of the current macro task being executed.
Typical checking mechanisms use condition flags and/or counters which represent the
state of associated resources. Naturally, look-ahead techniques assume flexible execution
control mechanisms implemented by the micro level sequencing primitives [24].
However, at the micro level, implementing look-ahead is very costly and difficult since
the look-ahead mechanism must be much faster than the micro cycle time in order to

achieve execution overlap, which, in most cases, requires hardware level primitives.

Nagle [33] provides a good insight into the general problems of control synthesis at the
micro level, although all the problems are not analyzed in depth. The major contribution
of this work is microprogram synthesis under given constraints, such as the capacity of
the microprogram storage, speed requirements, and the number of control signals that

can be activated at the same time. The control flow optimization and control
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distribution techniques proposed can be used to reduce the number of branches, to
shorten conditional branching time and to reduce the number of micro cycles, which is

essential to increase the performance of the micro engine.

Cook (8] considered multiphase clocking of PLA's in order to reduce the power
consumption of the PLA. A precharge scheme using a multiphase clock is used to
compensate the turn-on/off time delay. Although he does not mention it, his PLA
partitioning technique may be very useful for multistaging a control store using PLA's.
For example, we can partition the AND-plane and OR-plane of a large PLA by inserting
a latch to latch the product terms. Then, since it is a sequential machine design, we can

overlap the propagation delays of the AND-plane and the OR-plane.

2.5 Motivation

As we have briefly discussed, various techniques for speeding-up digital systems at the
macro level (or even higher level such as processes) exist. However, the ultimate
performance of these macro-level speed-up techniques depends very much on a good
sequencing control scheme at the micro level, since the macro level tasks including those
used to implement the speed-up techmiques are eventually implemented by certain

sequences of micro cycles.

As we have discussed in the previous section, existing techniques for high-speed
sequencing of micro cycles are not general in the sense that their models are very
restrictive and/or not precise enough to model actual digital circuits and sequencing of
the micro cycles. Also, each speed-up technique has been developed rather independently
and does not consider various effects of the result of applying the technique to the results
of other speed-up techniques or to the results of other optimization tasks such as cost
reduction. For these reasons, development of a more general model for clocking scheme
svothesis is strongly desired and is proposed here. The model and synthesis techniques
must be able to consider precise sequencing characteristics of the micro engines and

timing of the hardware as well as the cost of speed-up.
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[ 3 THE PROBLEM FORMULATION K3
|

This chapter summarizes: "

e Problem definition and modeling.

e Extraction of the parameters affecting the performance of a multistage micro :
level execution overlapping scheme (micro level). nin

The major problem components of clocking scheme synthesis are based on the Ay
discussions in Sections 1.4, 2.2 and 2.5,. Sections 3.1 and 3.2 will discuss modeling the EE:
sequencing and timing behavior of micro cycles. The discussion is based on those in :
Sections 1.2 and 1.3. Sections 3.3 and 3.4 will discuss the sequencing behavior of the e
overlapped micro cycles as well as the clocking and control requirements for micro cycle E:';
sequencing. E:‘:"E
3.1 Specifying the Functioning Times of Digital Circuits :
The timing behavior of a hardware module can be considered as a function of the EE
timing of external excitations and the functions they specify. Thus, in order to analyze '::t
the timing behavior of hardware modules, we must consider the functional behavior of o
hardware modules. -';E"
3.1.1 The Circuit Graph '
A physical hardware module which can perform multiple functions can be considered .:
to be multiple logical modules, which are defined as follows: °§:
Definition 1: A logical module is a set of physical hardware modules which §E_‘

can perform a certain complete function (either functional or archival) without
any resource contention with other functions at any time.

Logical modules may be either physically separated or share common physical
hardware modules. An adder chip or a pass gate can be considered to be a logical
module. A register chip can be considered as two logical modules, read and write
modules, i f il can be read and written simultaneously without any con flict in using tts
control and data lines. A bidirectional bus must be considered as a separate logical

module since it cannot be considered as a part of any one module conpected to it. A set




18

of interconnection lines which are always used together to transfer a certain value can
also be considered a logical module. In this sense, a logical module can be considered a
unit hardware resource whose timing and functional behavior can be unambiguously
defined. Also, resource contention between executions of the micro cycles can also be
represented in terms of the logical modules. From now on, the term module will always

imply logical module, unless otherwise specified.

Using the concept of logical modules, we can model a digital circuit as a weighted,
directed graph (circuit graph), where the vertices of the graph represent modules and the
directed edges represent all the possible pathways for both the control and data values
between the modules in the circuit. The purpose of the circuit graph is to connect the

control and data path hardware together.

Definition 2: A cireuit graph, G = (V,E), is a directed graph where the set
of vertices, V, represents modules, and the set of directed edges, E, represents the
pathways for data and control values between modules. A directed edge, e(i,j),
belongs to E if any output port of module i is connected to any input port of
module j. The vertices are weighted with the propagation delays of the modules
(6) and the edges are weighted with the bitwidths of the interconnection lines (o).
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Figure 3: A Circuit Graph of a Microprogrammed Computer CPU
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By weighting the vertices with the propagation delays of the modules, the propagation :h 3%
delays of data values and control signals along any path in the circuit can be computed. hy
The vertices for interconnection lines with non-negligible propagation delays must be ~
~
added. The bitwidths of the data and control flow can be computed easily using the edge f:'
weights. In the case of a partially designed system, all the necessary interconnections for E"'
the flow of control and data values specified in the data flow graph and timing graph ;:
ot
[26] must be added. Figure 3 shows an example of a circuit graph. >
oty
3.1.2 Specifying the Propagation Delays of Modules and Circuits 2
The micro or minor cycle time can be computed by summing up the propagation "
delays of the control and data flow through the modules along the execution paths. We :IE:
:
consider two types of propagation delays which are defined as follows: :;Zr_
'd' g

Definition 3: The port propagation delay(PPD) of a pair of input and
output ports of a module is the maximum time taken for any change of input 7
values to possibly change any output value.

i
For an adder, carry-in and operand ports are input ports, and sum and carry-out ports "
are output ports. For a read module of a storage element, the read control input is also -
o5
an input port. For a bus, each set of lines outputting data on the bus is an input port ::::\
"
and each set of lines receiving data from the bus is an output port. :ﬁ‘-
Definition 4: The module propagation delay(MPD) of a module is the \ .
maximum port propagation delay for all possible pairs of input and output ports \
of the module (maximum port propagation delay). N
-‘.:w'

In order to compute precise execution times of the micro cycles and the critical paths
of the circuits, the PPDs are preferred for the vertex-weighting of the circuit graphs. .
However, if the PPDs are used, more complex variations of the original circuit graph or fi.';
~
complicated graph theoretic algorithms are required. In the models that we are going to N
discuss in the following sections, we will use MPDs. N
i
e
';f
s
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3.2 Modeling Sequencing Behavior of Micro Cycles

In order to analyze the sequencing and timing behavior of the micro cycles efficiently,
we introduce two directed graphs, the MEG (Micro cycle Execution Graph) and the
COM (Chain Of Minor cycles). They are based on the circuit graph and model the

pattern of resource usage and timing of the micro cycles.

3.2.1 The MEG - the Micro-cycle Execution Graph

In order to model the pattern of resource usage and the execution time of all the types
of micro cycles, we construct edge-weighted, vertex-weighted digraphs. the MEG's

(Micro-cycle Execution Graphs). The MEG's are subgraphs of the circuit graph.

Deflinition 6: For a given circuit graph, §(V,£), the MEG for a set of one or
more micro cycles, G(V,E), is a rooted subgraph of G where the set of vertices, V
C YV, and the set of directed edges, E C &, represent only the modules and
interconnections activated by and necessary to the execution of the micro

cycles in the set.! The vertices and edges are weighted in the same way as in the
circuit graphs. In addition to the bitwidth-weight, the edges are also weighted
with the number of visits to the edges during a micro cycle ().

The MEG’s are rooted by a common root. In general, for any synchronous
sequential circuit or finite state machine [17], there must be memory and/or delay
elements in order to prevent sltate-change races and/or to control the time intervals
between state changes. Among the memory or delay elements, we can choose a subset of
them as the starting point of every cycle. For a microprogrammed micro engine, it can
be either the 4-PC or the microinstruction register. In case of a hardwired sequencer, it

can be either the state counter or feedback state-memory.

Figure 4 shows two MEG's derived from the circuit graph of Figure 3. using the MPD.
Both are rooted at the u-PC. Figure 4-(a) is the MEG for non-branch type

microinstructions. The execution sequence of this type of microinstruction is:

1. Increment PC (v1).

4Rt-:\d modules whose outputs are always enabled and write modules which are not written during the
execution of the micro tasks 1o the set are pot included although the values contained 1o them may be
needed by the micro cycles
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I:' ~
' 2. Fetch the micro cycle pointed to by the PC (v2).
:J: K
) :’ " 3. Decode the control fields of the fetched micro cycles: opcode (v12), operand
NN register address (v3), ALU function code (v4). rotate/shift function code (v5),
""_' & and result register address (v6).
;. ¥ 4. Fetch operand from selected register (v7).
:: 5. Perform selected ALU operation (v8).

B4
o

. Perform selected rotate/shift operation (v91.
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7. Store the result in the selected register (v10).

An example of the execution sequence of a branch micro cycle corresponding to the
MEG of Figure 4-(b) is as follows:

1. Increment PC (v1).

WS aE

2. Fetch the branch micro cycle pointed to by the PC (v2). ﬁ

ol

3. Decode the control fields of the fetched micro cycle: opcode (v12), condition N
select (v3), branch address modification (v4), and branch type (v5). I. ‘

4. Select a test condition and select the full jump address (v6).

LA

5. Load the PC with jump address. At the same time, if it is a CALL to a
subroutine, save the current PC contents in the stack (v7).

s "S‘

Assuming that there are no nested cycles, the MEG can show the sequence of

Nl

activation of the modules during the micro cycles by means of the visit-weight of the
edges, 2.5 Also by weighting the vertices with propagation delays, the MEG can also
represent critical execution paths and execution times of micro cycles. The MEG's can
be used to determine the locations for the stage latchs which either have to be added or -,
already exist. The locations and connections of the stage latches determine the

interstage propagation delays between the stage latches. Also, by weighting the edges

Y |

with the bitwidths of the corresponding interconnection lines (o), the bitwidths of the

added stage latches can be computed.

A
-

us

3.2.2 The COM - the Chain of Minor Cycles

Once the locations and connections for the stage latches are determined, the interstage

propagation delays are also determined and thus the minimum requirements of the

clocking and timing for the micro cycles are determined. This basic timing requirements . .
are modeled by one or more line graphs - more precisely, chains (COM: Chain Of Minor -n '\U
. . : L : NN

cycles) - which show the minimum required execution time of minor cycles as well as the :;.
\!

minimum required clock period. o E
5 >
In case when there are pested cycles which are visited more than twice, then a vector of vertex indices . e
which represent the sequence of visits to the modules may be associated with each MEG. N
o

':-‘1
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Figure 6: COM's Derived from the Results of Stage Partitioning

Figure 5 shows examples of the COM's derived from the results of stage partitioning of
the MEG's of Figure 4. The locations of the stage latches are indicated by the edge-cut
lines in the MEG's. In case (A), the stage latches are the 4-PC, an added latch next to
the control store and the register bank of Figure 3. Let ¢, be the clock phase used to
clock the i-th stage latch, Li' and Di be the phase difference between ¢, and birr Also
let &i) be the weight of vertex v;, and §3) + &§7) 2 4j), for ) = 4, 5 and 6 (COM (A)).

Then the timing requirements are specified as:
D1 > 41) + 42) + 412) + D((L,)

D2 > DgplL,) + &3) + 47) + 48) + &9) + &10)

where D¢ and Dgp are the set-up and storage propagation delays of storage elements
defined by Hafer [19). Note that Dsp(L1) and Dss(L3) is already in-!uded in the MEG as
v, and v, (v, in COM (B)), respectively.

At the end of the chain, D3 must be added in order to consider the completion time of
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all the effects of an execution of a micro cycle, although it is not explicitly specified in

the MEG. It is necessary to analyze the effect (data dependency, resource contention,

etc.) of a micro cycle on its successor. For example, if the next micro cycle reads the

result of the current micro cycle which will be stored in the third stage latch (e.g., V0 ©f

AL

MEG (A) or v, of MEG (B)), then the next micro cycle can only read the correct value

after the buffer has been clocked and the stored values propagated to its outputs.

LKA

The COM's can be used to determine a major clock period and the number and length

£

(phase lag) of the clock phases which clock the stage latches and execute the micro Y
cycles. Resource conflicts between the minor cycles can also be represented by attaching P
the module names used by the minor cycles to corresponding edges of the chain. =
o

3.3 Sequencing Behavior of Overlapped Micro Cycles ﬂ F
In this section, we analyze the sequencing behavior of the overlapped micro cycles -
according to their timing, pattern of resource usage, and interactions (data dependencies *
and resource conflicts) between them. ﬁ

Maximum Initiation Rate of the Micro Cycles

The maximum initiation rate of micro cycles is defined as the maximum possible
number of initiations of micro cycles during some unit time period when there are 2

neither branch micro cycles nor resource/data conflicts between micro cycles.

Figure 6 shows examples of micro cycle sequencing with different sequences of clock

phases. We assume a static clocking sequence. (a) does not use any overlapping, hence N
there is only one stage-latch and one stage. The micro cycle times of (b) through (d) are .
longer than that of (a) due to the propagation delays of the stage latches. In any case, és
the maximum initiation rate of the micro cycles is the same as the clock rate, tcy. The .
clock period must be longer than the longest interstage propagation delay in order to e
ensure that no two micro cycles occupy the same stage. Figure 6-(b) uses the shortest ‘.
clock period possible, which is 2. ‘

2
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Figure 8: Examples of Micro Cycle Sequencing and Clocking

Micro Branching

A branch micro cycle delays the fetch of the next micro cycle until the earliest fetch
clock cycle after the completion of the branching. Due to this resynchronization
overhead, the shortest clock period does not guarantee the fastest overall initiation rate.
Even increasing the clock period may result a faster execution if it can reduce the
resynchronization overhead. As shown in Figure 8, the total execution time of (d) is

shorter than that of (c) in executing k., through I Thus, the overall initiation rate

k+1°
will also depend on the frequency of the branch micro cycles. Therefore, determination
of the optimal clock period should consider the resynchronization overhead due to

branches.

Resource and/or Data Contention Between Micro Cvcles

Resource and data contentions

between micro cycles are other causes of

resynchronization overhead. If there is any data or resource contention between any two
micro cycles, fetching the later micro cycle must be delayed until its initiation does not
cause any contention with its predecessor. The delay time is dependent on both the

clock period and the pattern of data and/or resource contention between the micro
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cycles. These cases are shown in Figure 7. In case (a), if I,y is initiated as the dotted
cycle (IL “), then there will be a resource conflict or data dependency violation between
the minor cycles using resources Rl « 30d R, Case (b) does not have any
resynchronization overhead. This shows that the resynchronization overhead can also be

reduced by choosing a proper clock period.
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Iy [ . o ng +

_conflict U om owiz owmy R
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Lhat - reocmd = -“> oo - . . .
i R22 R2) R24 1 L R21 R22 K2} L R2%
Lt - - - g e
0 3 () L 12 15 [} ) [} C1213
time ! time
) (a) I" - 3. l“ n’u d, . (b) t" - b l"ﬂln -v.
Resynch. overhead = 3 %o resynch. overhead

Figure 7: Resynchronization Overhead due to Data/resource Contention

Resynchronization Overhead vs. the Number of Clock Phases

The time required for resynchronization may depends on the length of the clock phases
even if the same clock period is used. Increasing the intervals between the clock phases
may reduce the number of distinct clock phases without increasing the clock period.
Figure 8(b) shows a clocking sequence which is exactly the same as the COM, which
requires three distinct clock phases. Figure 8(c) has only two distinct clock phases with
the same initiation rate as (b) regardless of the resynchronization overhead. However, in
(d), the branching overhead is longer than that of (b) or (c) by one clock period (4 time
units) and thus the overall initiation rate is lower. Although there might be some
difficulties in gating and routing a single phase clock to multiple stage latches selectively,
reducing the number of clock phases may reduce the physical routing problem
significantly. However, if the longest clock phase interval is increased, it will always

result in a slower maximum initiation rate since the minimum possible clock period must

be longer than the longest interstage propagation delay.
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Figure 8: The Number of Clock Phases vs. Resynchronization Overbead

3.4 Clocking Requirements of Overlapped Micro Cycles

In the worst case, we may have as many distinct COM's as the number of MEG's,
which also requires as many distinct clocking sequences for optimal design. Especially in
the cases where execution overlap is extensively used, all the different clocking sequences
may have to be overlapped and thus as many separate clock generators are required. A
very complex initiation and termination control mechanism for the clock sequences is
required in order to prevent conflicts in the usage of both the hardware resources and
the data values between micro cycles using different clocking sequences. In actual
designs, this is not realistic and seldom happens because of the cost and control
complexity of the clock generator(s) and clock signal gating and routing. In actual
designs, a single clocking sequence (fixed number and sequence of clock phases) is usually
used with proper gating and routing of the clock phases to the stage latches. In addition,
wait cycles to extend certain clock phase(s) are often used for micro cycles with
exceptionally long minor cycles (e.g.,, I/O and main memory micro cycles). In this
report, we will focus on synthesizing clocking schemes with a single clocking sequence
while allowing all the variations as discussed. Two examples of such clocking sequences

for the COMs of Figure 5 are in Figure 9.
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f€ommm t1 ====>|<-~- t2 -=>[t3] t4 | €em== t1 ====>|¢-=- £2 -==>| ¢t3 |
ti = max{Di, D1’} t1 = max{(D1, D1’}
t2 = D2° t3 = D2 - D2’ t2 = max{D2, D2’}
t4 = D3 (t3 + t4 > D3’) t3 = =max{D3, D3’}
(a) Dynamic clocking (4-phase) (b) Static clocking (3-phase)

Figure 9: Examples of Single-chain Clocking Sequences

The dynamic clocking sequence, (a), is determined by the overlap of all the COM'’s.
Clock phases are gated and routed selectively according to the type of micro cycle. In
the static sequencing case, all the micro cycles are executed by a single common clock
sequence, a scheme which has been the most widely used in general purpose computer
CPU’s and simple synchronous digital controllers. Each type of clock sequencing has its
own advantages and disadvantages. Dypamic clocking sequences require more clock
phases and thus more expensive clock generators. However, by making the length of each
clock phase as short as possible, they may reduce the resynchronization overhead. In
other words, the overlapped time between minor cycles with resource contention can be
minimized. However, in any case, the longest interstage propagation delay is not

changed and hence the maximum initiation rate of the micro cycles will be the same.
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4 LOOP-FREE CLOCKING SCHEME SYNTHESIS RESULTS ‘:_‘:.
This chapter contains discussions and results of static clocking scheme synthesis for the -
sequencing of loop-free micro cycles. By ®loop free® we mean that each micro cycle uses :’{f
RS
the same (logical) module no more than once and thus there is no cycle in any MEG. z';;-
R
We analyze optimal stage assignment and choice of optimal clock period. Also,
2
determination of an optimal number of clock phases and their length is also analyzed. NS
LR
These analyses are carried out under two different goals: (i) to find an absolute optimal .é';
[
solution and (ii) to find an optimal solution with respect to certain constraints. Simple Lat
and efficient algorithms to determine optimal positions of the stage latches and optimal o
a5
number of clock phases are developed. We believe that we can easily extend these results oS
AS
to analyze data path cycle with loops and, furthermore, to analyze more general cases of fi‘,i
system timing styles. In each section, we summarize the results only. Detailed proofs of |
REAY
lemmas and theorems are attached as an appendix. -‘,:"'
::$~
rude
4.1 Definition of Variables AN
° ]
3 The module propagation delay of module i. E.r
v
[
Li,. The j-th inter-stage latch of the i-th COM (or MEG). ""'
In the single static clocking case, Lj is the set of Lij‘s for all i ﬁ'_-j:_'
I
‘&
i The control/data path stage in between Lij and Lij +1 <
d,. mf‘{DSP(Lij) + DFP(C“) + DSS(LU“)}. The maximum interstage
propagation delay of the j-th stages.
doax max{d,, d,, ..., d_} where m is the number of stages’ . "
.:_:a
n
23
G
6The reader 1s urged to skip this section and refer back to it while reading this chapter.
- ,'.-,‘-
‘m 1s the number of stages of the MEG with the largest sumber of stages. We call such a system an f:
m-stage system ,-.;,':.:
S
A
’\-' []
N
Y S SR S S R R SN LN Pt A SN R S S SR I N R S L P L AT S NN TR RS ROAT T R \_\.,\..’:'.::
0 4 > NN IO SO, RGN, ARG AN S S NACASIC AU A0 A NS RN




30

dg dg=d, +d, + ... +d

li A micro cycle as an instance of an execution of a micro task (e.g., an
execution of a microinstruction)

(]

Snb, n, A sequenc.e of micro cycles of length n, I Iy .ln-l.ln), where there are o,
branches in (I, .L,. ... .I_,)

ny = (o - ny - 1). The number of non-branch micro cycles in (I D)
Note that the last micro cycle, In, is excluded from n, even if it is a non-
branch micro cycle.

4; Clock phase j. Used to latch Lij for all i.

oj(k) Time when clock phase j latches Lij to execute 8 micro cycle lk'

D, The actual interstage time of the i-th stage determined as:
D; = 6,44(i) - 43) 2 d; 1<i<m, and D >d,

Yy A chosen multiphase clocking scheme for an m-stage system
vp = (D;.Dy, ... ,.D_)

Dmu max{Dl, Dz’ . Dm}

Dg D,+Dy+..+D

E, The actual execution time span of type i micro cycle over Dg.

tey Clock period. tcy 2D

/] n
T, D (Snb) Execution time for an execution sequence, Snb, with ¥, and tey (from ¢,(1) to

cy
¢,(n+1))
T.(x) T as a function of tcy (x) with fixed w and S

T(¥) T as a function of S (y) with fixed tcy and ¥
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4.2 Execution Speed Analysis

Determination of the Minimum Clock Period

The minimum clock period for a multiple stage system is determined by the interstage
propagation delays. In order to ensure correct sequencing of micro cycles, the minimum

clock period should be longer than the longest interstage propagation delay [9, 36, 7|.

Lemma 1 : For an m-stage system, M, with the stage times (Dl' D,, ..., Dm),

3 min(tcy) = Dmu. (Refer to Figure 2, 7, 8, or 9) 0O
The proof is found in the Appendix.

Execution Time of an Execution Sequence

For an execution sequence of micro cycles, the execution time is defined as the time
from the fetch clock phase for the first micro cycle in the sequence to the earliest fetch
clock phase after the completion of the last micro cycle in the sequence. For an
execution sequence of n micro cycles, if there are no branch micro cycles in it and there
is no resynchronization overhead, then the execution time, T, is computed as the sum of

the following:

1. (n-1)-t cy for the first (n-1) micro cycles which are initiated every tcy period.

D
2. [c_s]'tcy' which is the execution time of the last micro cycle
cy
Dg
T=(-1+ |~ )-t.cy (4-1)

cy

Slow-Down Due To Branching

Any branch cycle delays the fetch of the next micro cycle until it completes branching.
. The difference between the fetch time of next micro cycle after a branch cycle and after

a non-branch cycle is defined as branching overhead.

Lemma 2 : (Refer Figure 7) Let M be an m-stage machine with a multiphase ~locking

scheme Vp = (Dl. D,. ..., Dm) and clock period tey- For any two execution sequences.

o
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N
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Q
N

S, and S,, let S, be the same as S| with some non-branch cycle, lj, 1 <€) < n, replaced
with a braach cycle, l}. Then

D
T(S,) - (S, = ‘cy'{[ﬁl 1)

ot g

‘a
*
O E
[€~==mm=mnmn Ds TEESssTes >| -
 DRERN EERSPRPE |-=meeene | ===ne- I '
12° f--=m-=-- R |-=----- |
(vhen I1 is not a braach) C)
2 R R f-mene !
(vhen I1 is a branch) :::
l<-=tey-->|¢-=-== 2 tey ----- > | | -~
s
d
If there are o, branch micro cycles, then the total branch overhead is
D e
: nb'{[g] -1 }-tcy (4-2)

Thus, the difference in execution times for two sequences of micro cycles is a function
of the cycle time and the total interstage times. In actual systems, there may be several K
types of branch micro cycles with different execution times (no more than 4 types in
most cases of micro-sequencers). Typical types of branch micro cycles which may have ’ ’

different execution times are conditional branch, unconditional branch, decode branch

and ®sense and skip®. In such a case, we can compute the branching overhead for each 2
")

type of branch micro cycle. For example, let E, be the execution time span of type-i

branch micro cycles over the sequencing chain. Then the branching overhead of type-i ?5

E.
branch micro cycles is { t—'] -1 }-tcy.

cy ’\§

Execution Time of an Execution Sequence with Branches

7 .

The execution time of an execution sequence of n micro cycles with n, branch micro i
cycles can be calculated as the sum of the execution time of n non-branch executions and 2
. i 5

the branching overhead for n branches. 3
»

.
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Theorem 3 : Op an m-stage system M with a multiphase clocking scheme ¥ = (D,

D2. vy Dm) and clock period tcy. if there is no resynchronization overhead, an execution

n
sequence Snb is executed in:
Ds
T={n; + &Y (o, + 1) }t, O

Theorem 3 shows the relationship between the execution speed and the number of
branches, the clock period and the length of the clock phases. The proof of this theorem
is found in the Appendix.

Modification for Micro Tasks with Different Execution Times

As mentioned before, the system may have several types of branch micro cycles with
different execution time spans. Suppose that there are j different types of branch micro
cycles. Let n,,, 1 < i < j, be the number of type i branch micro cycles with execution
time span E, out of n.. Then, we can replace Equation (4-2) with

J E.
< 1 nbi'{[i—l" -1 }'t'cy (4-3)

= cy

Also non-branch micro cycles may have different execution time spans. Assuming that
we know the execution time span of each type of micro cycle and the execution sequence
of micro cycles, we can also generalize Equation (4-1). In order to generalize Equation
(4-1), we only need to consider cases where the execution of I, for some /, | < n,
completes later than In. Since any branch micro cycle, I, 1 < i < n, must complete
execution before I, starts, we can exclude branch micro cycles from this special case
computation. Therefore we only need to consider such I;'s that there is no branch micro

cycle in between I, , and I . Then we can replace Equation (4-1) with

E
(n-l)'tcy + m?x{[ﬁl - (n-1) }-tcy (4-4)

where 1 < I < n. and there is no branch micro cycle in between ll_l and I .

Using Equations (4-3) and (4-4). we can fully generalize all the previous analyses to
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dynamic clocking analysis, where the micro cycles may have different execution time
spans. However, as we can see by Equations (4-3) and (4-4), dynamic clocking analysis
can simply be considered as a special case of static clocking analysis. Exactly the same
approach and methods can be used for both analyses by simply adjusting several
variables and/or constants as is done in Equations (4-3) and (4-4). For this reason, we

will focus on static clocking analysis.

4.3 Maximum Execution Speed Analysis
Execution speed of a multi-stage system is a function of:

1. Interstage propagation delay di's.
2. Clock Period tey
3. Clocking scheme ¥ = (D,’s)

(]
4. Given execution sequence, Snb.
In this section, we analyze the effects of these execution speed parameters.

Determination of an Optimal Clock Period

Lemma 4 : Let M be an m-stage digital system with v = (D,, D2, .., D) fixed. On

n
M, for any execution sequence Snb,

D D D
Tt(TS') < Tc(T§') for any integer k, [Us—]>k21, and real k', 0<k'<k. O
max

The proof of this lemma is found in the Appendix. With Lemma 4, we can see that the
execution time function in terms of the clock period is not linear and reducing the clock
period does not always reduce the execution time. However, we can determine an
optimal clock period of an m-stage system with fixed a clockirg scheme with the

following lemma.

Lemma 5 : Let M be an m-stage digital system with ¥ = (D, D,_,, o Dm) fixed. On

b,

M. for any execution sequence S_

KA

'Y
-

1

T I
P

'
-

|

)

> .

1

LA

N g
LS

8.7




L FFx . b g N TR |t g

S ToTo T

35

. ) DS r DS
min(T,) = mio{T(D_ ), T3 }, where p =

max

0

Using Lemma 5, we can determine an optimal clock period by evaluating the execution
time of given execution sequence(s) only for two clock periods. In practice, execution
sequences may be nondeterministic due to nondeterministic conditional branches (e.g..
conditional branches on some external conditions and exception handling). However, if
we can obtain statistics regarding the average length and composition of the execution

sequence(s), then by using Lemma 5, we can easily estimate an optimal clock period.

Theorem 6 : Let M be an m-stage digital system with ¢y = (D,. Dy, ... . D) fixed. On

n
M, for any execution sequence Snb,

min(T) = T(D_.) if (o, + 1D, - ) < gy
Dg. . !
Tt(Dmu) = Tt(ﬁ) if (nb + 1)-(Dmax -y = Do
Dg , !
Tt(B-l) if (nb + l)«(Dmu -)> Dy
Dg
where p = m andl=DS-(p-l)oDmu O

According to Lemma 5 and Theorem 6, we see that the shortest possible clock period,
D, may not be optimal. Next, we will prove that any clocking scheme other than the
original interstage propagation delays with D > d__  (accordingly Do > d.) will

always result slower execution speed for the same execution sequence of micro cycles.

Figure 10 shows an example of the relationship between the execution time of an
execution sequence and the chosen clock period. As shown in Figure 10, if there is any
branch micro cycle in the execution sequence, then execution time T is a discontinuous
function of clock period tey: The slope of each straight-line is determined by the number
of branches (n,). If there is no branch cycle in the execution sequence at all, then T

becomes a straight line as shown with a broken line.
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Figure 10: Execution Time vs. Clock Period

Theorem 7 : For an m-stage system, M, with interstage propagation delays
(d), dy .. dp), let ¥y =(d,, d,, ..., d ) (same as the original ¥,;) and ¥ = (D,
» D)), where D, 2 d,,1 < i < m, be two different clocking schemes.

Vv, v
IfD_, > d,.. (then also Dg > dg), then min(7, D) > min(T, 9 0

max

Theorem 7 shows that, even if the optimal clock period resulting in the fastest
execution speed is chosen to be longer than the longest interstage propagation delay,
increasing the longest stage time (Dmu) will always result in a slower maximum
execution speed. In other words, in Figure 10, if the longest stage time is increased, then
the length of the clocking sequence (DS) is also increased and the execution time curves

are shifted upward and to the right.
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4.4 Optimal Stage Partitioning

In the previous section, we analyzed the performance of multi stage systems. As we
have discussed, if the execution sequence of micro cycles is given (fixed stage
partitioning), the execution speed of the system is determined by the clocking scheme.
However, the optimality of the clocking scheme is a function of the stage partitioning

since the interstage propagation delays determine the minimum requirements of the

- v

clocking scheme. To determine whether to use a multistage scheme or not and,

A A Ay By
LS L

furthermore, to choose an optimal number of stages, we need the following:

N SR Y

L
‘r\:c

1. A good stage partitioning method to partition the system into certain
number, k, of stages while maximizing execution speed

% Y

2. A method for performance comparison of a k-stage scheme to a single stage
scheme with given system specifications and statistics regarding the execution
sequence(s)

AR AR

o

>,
)
>

3. A technique for cost analysis (including speed/cost tradeoff) of a multistage
system compared to a single stage system.

o
Y

PArXRAA 150

In the first paragraph, we discuss stage partitioning and performance comparison. Cost

analysis and speed/cost tradeoff analysis will be discussed in the following paragraph.

4.4.1 Optimal Stage Partitioning

The stage partitioning problem consists of two subproblems:

o

1. Given the number of stages, k, get an optimal k-partition of the system to
maximize execution speed (i.e., partition each MEG in such a way that the
number of partitioned stages is less than k and the longest interstage
propagation is minimized).

.

vy
A

\-
[/

o

2. Determine the optimal number of stages, k. which maximizes the execution
speed.

The second problem is a superset of the first problem. After determining an optimal
partitioning of the system for all possible cases of k. we need to compare the
performance of a single stage scheme to a multistage scheme for certain k's. For this
reason, we need an efficient algorithm which can determine an optimal k-stage

partitioning of a given design, given the desired number of stages In this paragraph. we
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develop an optimal stage partitioning algorithm which runs in polynomial time to the
number of partitionable points (called intervals) of the design. We first introduce a

useful procedure and, based on it, we design the main algorithm.

The following procedure, KPART, determines the minimal number of partitions, k,
necessary when the maximum length of stage time is limited to L . Time delays due
to the stage latches are also considered. Let ¢ _  be the longest module propagation
delay. If Lm“ =t Dss + Dsp, then k found by KPART is the minimum number
of partitions to minimize the length of the longest partition of a given system. The
procedure also determines the locations for the stage latches, though there may be some

other partitions which have the same L . and k. The algorithm also computes the

ax
actual minimum clock period after the stage partitioning. The partitioning procedure

will be demonstrated in the next paragraph using an example.

ALGORITHM KPART(G, Laax, cutset(N], d(N], dmax, Des. Dsp. K);

{» G input circuit graph *}
{¢+ Lmax saximum limit of clock period > max{s} e}
{* cutset sets of edges on which stage latches are to be added ¢}
{» d stage propagation delay *)
{* dmax computed minimum clock period < Lmax )
{» Des Set up time for stage latches *)
{e Dsp Storage propagstion time of stage latches *}
o K The number of partitions determined s)
variable

H : Set of the starting vertices of the curreant partition

SF : Set of the current searching froate

EH : Set of the edge candidates to have stage latches
TEMP : Set of the vertices to be added to curreant H

NH : Set. Starting vertices for the next partition
w(i) : Delay time from the previous partition to vertex i

including &,

OE(i) : Set of all the edges coming out of vertex i
IE(i) : Set of all the edges going into vertex i
mark(i) : Boolean variable. True if vertex i is already checked

N
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begin {*KPART+)

for every MEG do

NH := {(root(s)}; EH :={()}; K :=1; dmax :=0;
’ w(i) := 4 for every i ¢ NH;
repeat {* until empty(NH) s}
. {* get starting points of a new partition s}
K:=K+ 1, TEMP :=NH; NH := {(}; {* init H and NH ¢}

{* initialize the propagation delays *}
if (x > 1) then
! for every i « TEMP do w(i) := 5, + Dsp;

repeat {* until empty(TEMP) ¢}
H := TEMP; TEMP := {};

{* remove all indirect vertices *}
forevery i ¢ H do H := H - descendents(i);

{+ get searching fronts #*}
SF = {}.
for every i ¢ H do
SF := SF + children(i);
EH := EH + OE(i): {* candidate loc. for stage latch ¢}
’ for every j ¢ SF do SF := SF - descendents(j);
for every j ¢ SF do mark(j) := false;

for every 1 ¢ H do
for every j ¢ children(i: do

: if j ¢« SF then
if w(i) + 6’ + Dss > Lmax
. then

A cutset(k) := IE(j). <{* cut the edges +*}
EH = EH - IE(j). {* and remove them *}

{* update stage propagation delaye ¢}
d(K) := w(i) + Dss;
if d(K) > dmax then dmax := d(K);

{* if j is not a leaf, put it in NH *}

0 At N Y AT ALY A T T e et N e e
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if § not a leaf then NH := NH + §;

{* if put in TEMP previously, remove it s}
if mark(j) then TEMP := TEMP - j.

else if § not & leaf then
{* move searching head ¢}
if not mark(j)

then
mark(j) := true;
TEMP := TEMP + j§.
w(j) := w(i) by

EH := EH - IE(j) + OE(j). {* update edges +}
{* if j is already in TEMP but with skorter ¢}

{* delay, then update it with this longer ones}
else if w(j) < w(i) « 5 then

w(§) := w(i) + 8
until empty (TEMP)
{* Put all the edges still remaining in the cutset. ¢}
{* These edges go into vertices beyond the current SF ¢}
cutset(k) := cutset(k) + EH;

until empty (NH) ;

end {*KPART*}

This algorithm has been programmed in FRANZ LISP and currently runs on the
VAX/750 under UNIX 4.1-2.

Lemma 8 : The number of partitions, k, derived by procedure KPART is minimal. 0O
The proof of this lemma is found in the Appendix.

Run Time Analvsis

The algorithm traverses each edge of the MEGs only once. For each traverse, it

performs comparisons and additions a constant number of times. Therefore. the total

SR I A A S AT R R TR LI IO R I I S S .- PN

A
LI 2P 2N

Sl
L85

A

NS
PN

A TR
PV

W o ey

" 5. "..

48




41

bt 3 ks

computation time is O(|E|), where |E| is the sum of the number of the edges in all the
MEGs. In actual designs, the fan-in/fan-out limits the number of interconnections
to/from each component, which can be considered as a constant. Therefore the time

complexity of this algorithm is O(|V]), where |V] is the sum of the number of the vertices

- W

in all the MEGs. (In the case of infinite fan-in/fan-out designs, the time complexity will
be O(|V|%).)

X, |

On the other hand, given a desired number of stages, K, we might like to determine
The following algorithm, OPART, calls a

procedure which enumerates all the possible stage times of given MEGs. It uses a

the minimum longest stage time, Lmax.

:

Mergesort procedure and binary search followed by a call to KPART to check the
feasibility of the choice of L . The binary search continues until the minimum feasible

L ., is found to determine an optimal K-partition of a system with a given K.

Algorithm OPART(K; var d__ . var p(K]);

{+ K .... Input. Desired number of partitions *}
{+ d_,  -... Output. Length of the longest partition s}
{* p@i) .... Output. Locations for the i-th stage latches *)}

{* This algorithm uses a binary search technique to determine ¢}
{* the shortest interstage propagation delay which partitions ¢}
{* the system into the given number of etages, K. s)

begin
{*enumerate all the possidble interstage propagation delaye*)}
findintervals(I[1..N)) ;

{ssort the propagation delays in non-decreasing orders}
Mergesort(I[1. .N],8([1..N]);

startpoint := [N/2]

lastpoint = N
level =1
k = m; {sinitialize kse)

{* binary search among all the possible time intervals ¢}
while startpoint # lastpoint do

Pl
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begin E;:
{* update status ¢} -
level := levelel !
step = [N/(2¢¢1avel)|; %

&

{* compute the number of stages with given time interval s}
KPART(MEG, s(startpoint). p(K]., d(K], dmax, Des, Dsp, k).

{* determine the direction of mext search ¢}
if k > K then startpoint := startpoint + etep

RN 4
[V

[

{* oven if k = K, continue search to ¢} ~
{* find the minimum dmax. )
elee if k = K then lastpoint := startpoint; )
startpoiat := startpoint - step. ;
end .
end 2
2,

Run Time Analysis : The main loop is iterated O(log{m)) times (binary search), where
m is the total number of modules in the MEGs. There are O(m®) elements in s making oy
findintervals O(m?) (the enumeration of distances between all the possible pairs of nodes £
in the MEGs). The inner loop inside the main loop takes O(m) steps at each iteration. ’
Thus, the time complexity of the main loop is O(mlogm). The MERGESORT for O(m?) '
elements takes O(mzlogm) time steps. Therefore, the actual runtime of this algorithm, -
O(mlogm), is determined by that of the Mergesort. -
Lemma 9 : d__ computed by the algorithm, OPART. is minimal. -
N
Proof : Proof is obvious by the construction of the algorithm and its procedures. s|i|'s N/
are the only possible cases of the length of any partition and the algorithm chooses the -
-

minimal possible length from s. Therefore, d_ . is minimal.

PEICIPErt

s

In the next chapter, we will demonstrate how the stage partitioning algorithm works

with several examples.
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4.4.2 An Example Stage Partitioning

Figure 11 shows the weighted MEG for the non-branch group microinstructions of the
HP-21MX CPU. The execution sequence of the microinstructions is already shown in
Paragraph 3.2.1. The edge- and vertex-weights are computed directly from the actual
circuit diagram. Using this example, we will trace some important steps of the

partitioning algorithm KPART.

vs v2 {L1) = 1S5 (bits)
@ 22 @ Dl = 85 (nsec)
s . [L2] = 24 (bits)
vi va 2 va .
] 4 D2 = 75
@ 70 15 @ (L3) = 32
‘ 17
Ll . ’ D3 = 80
v L4) = 29
(POl
‘ D4 = 40
vi2 \ . (LS] = 16
@ 10 vn doax = 85 (nsec)
L2 \ Ds = 290 (nsec)
L3 L4 LS

Figure 11: An Example of a Weighted MEG of Figure 4

ALGORITHM KPART(G, Lmax=85, cutset, d, dmax, Dss=5, Dsp=10, K);
1. Initially, cutset(1) = e, (the first stage latch L1), H = {v,}, SF = {v,}.
and EH = {em}.

2. v, can be included in the first partition since §, + &, + Dss < Lmax. Thus H
is updated and new SF is computed.

a. v,is put in TEMP and moved to H. TEMP is cleared.
b. SF gets {v3. Vo Ve Vo vu}

C. El{ becomes {e., 3 e, Py e, (X e, 8 e, lﬂ}
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d. Vertices Vo Vo Vs and vg are removed from SF since they are
descendents of v,,.

in SF cannot be included in the first partition since (¢, + 6, + §,, + Dss)
exceeds Lmax.

a. EH = EH - [E(v,,). e, 12 is removed from EH and put in cutset(2).
b. v, is put in NH to become a head for the second-stage.

c. d(1) and dmax are updated with (6, + 5, + Dss) = 85.

. TEMP is empty. Thus, all the edges in EH are also put in cutset(2). The

locations for the second stage latches are €3 €4 €5 €ag and €12 {the
second stage latches(L2)}. d(1) = 85.

. ¥y is moved from NH to H and new SF and EH are computed.

a. W(12) = §;, + Dsp = 25, SF = {v,, Ve Ve Vel

b. EH={e,5 ). €55 €5} + {€55, €19, €55 €56}

. All the current searching-front vertices in SF can be included in the second

stage. Thus the TEMP is updated to contain v, v,, v¢, and vg. The

corresponding updating procedures during the initialization pass of the inner
*repeat® loop are:

a. H= {v3' V" vsv vﬁ}» W(3) = W(B) = 45’ W(‘) = W(S) = 40.
b. EH == {e3'7. e"av e5'°! ec'lo}

c¢. SF = {v., vq, vg. v o} - descendents(v,) = v,.

. v, can be included in the second stage and thus v. becomes the next

searching head.

a. H={v,} (w(7) = 70), EH={e. 5, e, 5. €. . €5 ;o }. SF = {vg}.

. Including vy violates the maximum stage propagation delay (w(7) + g + Dss

= 140).

a. NH = {vg}, cutset(3) = {97.8’ e
latches(L3)}. d(2) = 75.

.8 %59 86,10} {the third stage

b. d(2) = w(7) + Dss = 75. EH = EH - [E(Vg) = {95'9- 95.10}'

.............
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9. H = {vg}, w(8) = 48) + Dsp = 75, SF = {vg}.
EH = EH + {98,9} = {85.9’ €6 10 es'o}.
10. w(8) + 5 + Dss = 100 > Lmax. Thus, d(3) = 80 and
cutset(4) = EH = {esvg, €6 10" es,o} {the fourth stage latches(L4)}.
NH = {vg}, w(9) = 30, SF = {vw}.
EH = EH - [E(vy) + OE(vg) = {emo, eg'lo}.
11. The remaining vertices, vy and v,, becomes the fourth stage and are

terminated by the fifth stage latch(L5). d(4) = 40.

Finally, d(5) is determined by the storage propagation delay of L5. The result of the

stage partitioning is shown in Figure 11. The corresponding COM is shown below.

d(1) da(2) d(3) d(4) d(6) d_,. = 86 nsec.
| e ===o==-- |-==ome-- |==emmm- I--1 d; = 290 nsec.
85 76 80 40 10 (nsec.)

4.4.3 Performance Comparison - k-stage vs. Single Stage

As the number of branch executions increases, the efficiency of a multistage system
gets worse due to the additional delay through the interstage latches. Also, if the longest
interstage propagation delay (D__ ) is too long, the performance of a multistage may not
be as good as a single stage system since the amount of overlapped execution time may
be very small. Using the execution time equations developed in Sections 4.2 and 4.3, we
must compare the average expected execution speeds of all the possible configurations of

the system. That is, we must compare:
Ds . . .
T={ny + [Z](n, + 1) }-t,cy of multistage configurations and
cy

T= n-t;y of a non-overlapped configuration.

where t;y is the critical path propagation delay of the MEGs.
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AN

In addition, we must consider the cost increase. Multistage implementation of a system
requires some additional hardware such as interstage latches and a multiphase clock

generator. Routing the multiphase clock signals may cause problems in the same way

that power routing does.
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5 EXAMPLES ILLUSTRATING STATIC CLOCKING SCHEME
SYNTHESIS

In this chapter, we demonstrate the results of the static clocking scheme synthesis
discussed in the previous chapter. We choose two examples, a microprogrammed CPU,
HP-21IMX, and a systolic array. The first example, HP-21MX, shows how the proposed
technique can be used to complete a partial design. The second example, a systolic
array, shows how an already existing system can be sped-up by virtue of execution

overlap without changing any data or control flow.

5.1 A Microprogrammed CPU

The circuit graph of the HP-21IMX CPU is shown in Figure 3. The corresponding
MEGs are shown in Figure 4. Three different results of stage partitionings are shown in
Figure 12. (a) is the original 3-stage configuration used. (b) and (c) show the optimal 3-
stage and 4-stage partitionings determined by the algorithm OPART. As mentioned
before. the algorithm OPART requires an interval enumeration procedure in order to
partition the MEGs for every possible length of the interstage propagation delays.
Currently, we do not have an efficient interval-enumeration algorithm. Instead, we
enumerate the intervals which are possible from the root including the longest module
propagation delay, which takes O(|V|) steps. They are (80, 95, 110, 115, 140, 165, 175,
205, 225, 235). Since the partitioning algorithm KPART computes the actual stage
propagation delays, these intervals are accurate enough to be used by OPART, the

optimal stage partitioning algorithm.

We assume that Dss is 5 nsec. and Dsp is 10 nsec. The 3-stage partition (b) is obtained
when L = = 130 nsec. including 15 nsec. total for Dss and Dsp of the stage latches. The
+stage partition (c) is obtained when L__ = 110 also including 15 nsec. total for Dss

and Dsp.

The timing values determined by the stage partitionings are listed below. The lengths

of the clock phases have a certain safety margin, as shown.
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e s 10 105 ueec
bay () 175 w0 110 msec
o, s wo 105 meec
o, s wo o meec
o, e 0 1o msec
e, - - 10 e
Ty YO s o  bite

(a) (b) (c)

D1 D2 D3 D1 D2 D3 D1 D2 D3 D4
| -mmmmmee R R B |-memee- R EESEES |-mmmeee |-memme -1
175 175 10 130 140 10 105 85 110 10
For configurations (a) and (b), there is no resynchronization overhead. For

configuration (c). there may be data contention between two minor cycles, the ®store
result (D4)® of a micro cycle and the ®read operand (D2)® of the next micro cycle. which
requires delay of the next micro cyvcle fetch for one clock period. The branching

overhead of the configurations (a) and (c)® is two clock periods. For configuration (b).

D
the branching overhead is only one clock period since t—sl -1 =1 (Lemma 2).
cy

We first compare the original design (a) and our 3-stage partitioning (b). As shown in

81 Refer to Figure 12 and Equation (4-3) for the calculation of the branching overheads

2 For all the configurations, we assume that the lengthe of the clock phases are fined and no wait clock
periods are added
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- (c¢) A 4-Stage Comfiguration
‘.

o Figure 12: Stage Partitioning of the HP-21MX CPU
the circuit graph of Figure 3, the second stage latch of the original design is the micro- o
instruction buffer, which is usually determined in ad hoc fashion and most widely used in
microprogrammed controller designs However, as shown in Table 5.1, we increase the
performance of the system significantly by moving the location of the second latch The

cost increase 1s only 2 latch bits.
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The performance comparison of the three configurations is summarized in Table 5.1.
For each configuration, the execution times for 100 micro cycles are computed with
different numbers of branch cycles and resynchronizations. As shown in the table, the
4-stage configuration shows the best performance in general. In the worst cases when
more than bhaii of the micro cycles either branch or need resynchronization, the
performance of the 4-stage configuration, (c), is worse than that of (b). However, such
cases are unusual. In such cases, we can re-compute the optimal clock period and
corresponding execution time using Lemma 5 to determine whether to use the multistage

scheme or not.

¢ of ? of Execution time (u-sec) Normalized inttiation rate
brlnchtl(nb) resynch (a) (b) (¢) (a) b) (c?
0 0 17.5 14.0 11.0 1.00 1.2% 1.80
10 0 1.0 15.4 13.2 0.83 1.14 1.
20 0 24.5 16.8 15.4 0.71 1.04 1.11
40 0 31.9 19.6 19.8 0.56 n. 89 n se
0 S0 17.8 14.0 16.5 1.00 1.2% 1.0
10 40 21.0 15.4 17.6 0.83 1.14 n.no
20 30 24.8 16.8 18.7 0.71 104 n. oy
40 10 31.5 19.6 20.9 0.56 n, Re n.Ry
(n=100)

Table 5.1 Comparison of execution time and initistion rate of
three different configurations of the HP-2IMX CPU.
(a) The original }-stage configuratian (Fig.l2-a)
®) The reconfigqured J-stage confiquration (Fig.l12-b)
(c) The 4-stage configuration (Fig.l2-c)
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5.2 A Systolic Array

In this example, we show how an already designed systolic array can be sped-up
. without changing the original data and control flow.
5_‘3 The original systolic array design is taken from [31] and shown in Figure 13-(a), which
continuously evaluates the function y, = jio 8(xi_j,aj). In the original design. the
- propagation delays of the registers are assumed to be negligible and we make the same
o assumption here. The clock period is 13, which is determined by the critical path by == >
B §,--> *+,*. Eachy, is calculated by clocking all the registers R, through R, at the
» same time.

Figure 13-(b) shows the corresponding MEG. The MEG is rooted at the external input

= port x. since each micro cycle reads in the input port and all the constants, s, through
r a,, are always enabled and remain the same. The desired interstage propagation delay is
:.':: chosen to be the same as the longest module propagation delay, which is 7. As shown in
- (b), four latches are to be inserted, in between R3 and *+,% & and *+,°, 4, and 4"
. and 6, and *+,° as the result of the stage partitioning. The resulting COM after the
. stage partitioning is shown in (c). ¢, clocks the original registers R, through R,. 2
~

clocks the added stage latches and ¢, clocks the original registers R « 30d Re. The

. resulting clock period is 7 (D2), which is almost twice as fast as the original design.

. The systolic array continuously evaluates the same function every cycle and there are
:"' neither branch nor resynchronization overheads. Accordingly, the throughput rate is
< inversely proportional to the clock period. Therefore, the throughput rate is increased
% by (13-7)/7 = 85.7 (¢). This throughput rate increase is achieved at the cost of the
% four added overlap stage latches.
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(a) The Original Systolic Array Evaluating L 6(x
j=0 ce
L d

-5735)

Yi

Cut Line
(Lmax=7) . !

Ssvevcedocssrscccscagdovcoecroscsdqachon

Yoy

(b) The Corresponding MEG and Stage Partitioning

ALY

Figure 13: Stage Partitiomng of a Systohe Array
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Figure 14:

(a) The Reconfigured Systolic Array as the Result

of the Stage Partitioning of Fig.13-(b)

D1=8 = D2=7 1 D3=7
| N |
¢y ) é3
R1-3 R6-9 R4-5

(b) The Clocking Scheme for the Reconfigured Syvstolic Array

Stage Partitioning Result of the Systolic Array of Fig. 13
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APPENDIX

1 Proofs of Lemma 1 through Lemma 8

Proof :(Lemma 1) To ensure that (i) each stage can have enough time to execute a

given subtask and (ii) there is no collision between micro cycles at any stage, the

following three conditions must always be true:
1. from (i), ¢,,,(0) 2 ¢,(i)) + D, Vij, 1 <i<m,
2. from (ii), ¢,(j+1) > $+10), Vij, 1 <i< m, and
3. also from (ii), ¢_(j+1) 2 dmli) + D
By the definition of 6,(J)’s, 6, (i+1) = $,() + tcy, Vij,1<i<m
By applying conditions (1) and (2) to Equation (4), we get:
i+l =i} + 1t 2 6(i)+ D, Vij,1<i<m

Thus,tcyZDi,Vi,l$i<m

(1)

(2)

(3)

(4)

(5)

Also, by applying condition (3) to Equation (4), we get ¢m(j) + tcy > onli) + Dm.

Thus tey 2D,

By (5) and (6), tcy > Di' Vi, 1 <i< m. Therefore min(tcy) = Dm

(6)
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Proof :(Lemma 2) The only execution interval affected by the replacement is between
¢,()) and ¢,(j+1). Let T1 and T2 be ¢,(i+1)'s before and after the replacement,
respectively. Then,

T1=s(j) +t,, (7)
Since l,f is a branch, T2 2> ¢_(j) + D, = ¢,(j) + Dg (8)
. : Dg
From Equation (8), we get: T2 = ¢,(j) + | ey (9)
cy
D
Therefore, (branching overhead) = T2 - T1 = {[t—s] -1 }-tcy. (QED.))
cy

Proof : (Theorem 3)

1. Every non-branch micro cycle except the last one is fetched and executed at
the clock rate, tcy

D
2. The last micro cycle execution takes [‘—s]-tcy

<y
3. By I and 2. an execution sequence of length n with all non-branch executions

Dg
is executed in time {{ ] + (n-1) }- t (10)
cy
4. By Lemma 2, time overhead caused by replacing n, non-branch executions
D
. L s
with branch executions is nb'{[gl - l}-tcy (11)

o

. Replacing the last micro cycle. I , with a branch micro cycle does not change
the execution time, since there is no overlapped execution sfterwards anyway.

Therefore, the execution time = (10) + (11). or
D

D
= | ]l + (o-1)}-t y ¥ 0y {[ y] - l}t = {ud + L:;]-(nbﬂ)}'tq (QED)
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5’3 Proof : (Lemma 4) By Theorem 3,
D D De D D
T - TP =gl - ) + (o + D{[K] - Dy} (12)

Py IR

By evaluating the range of each components in Equation (12), we get:

l.nbg(n-l),nd=n~l-nb20

v b>0n, +12>1
S v er s Ds
R 3.0<k Sk'T"TZO
D
N . 4 [K1/k 2 1, [k]9%-Dg 2 0
e
& , Ds. - Ds
‘ 5 By Equation (12) and from 1 to 4, 'Q(Tr) - Tt(T) >0
h Dg Dg
SR Therefore, T(2) < T(¢7) (QE.D)
-\\ :-f
*
3\
‘|_ » . ... Ds DS
: . Proof : (Lemma 5) tcy 2 D_,, and, by the definition of p, - < Dmu .
’ D
.', ,. Accordingly we can partition the range of tey into D_ < s and tey > —Sl-
RS Then
D& . . . Dg . Dg
x min(T,) = min| min{ T(t, )leu_ ty <51 }, mm{?i(tcy)ltcyzm }]
o i) By L in{T, DS} = T8
: ) (i) By Lemma 4, min{T(t, )|t.cy 2 51 } = ‘(;i-)
D D
v S (i) -pé <D, < ;Sr. From Theorem 3,
' Dg Dg
X $3 Tity)=ngt, +plo, + 1)t =<t <=3 (13)
% Bt Equation {13) is a linearly increasing function with the slope (ng + (o, + 1)p) >0
s 7
.’
E “ Thus, min{Tl(t )IDmu_ cy<—l } = T(D )’ Therefore, according to (i) and (ii).
h @
2 min(T) = min{T(D__.) T(DS) }, where p = [ Os ] (QED)
:.)..' t maxh LT I D ’
. :..
N
‘ ------------------------------------------- at - o v -
‘ RO < TSR .'-.(-.J e, ’ . '_ "'f"f:f"l‘.'-'\""-'.'-'\ N AT A \,\'--.'-...-,.»_ ._‘..;.' - - ".‘.'{: .8 \1




RE.

57

NI

D
Proof : (Theorem 8) We prove the theorem by comparing T.(D,,) and Tt(Fsl')' From

Theorem 3, we know that:

J

T‘(Dm“) = nd'Dmu + (oy, + l)-p-Dmu and 'i:
Y
Dg

| (Vl) = nd~p1 + (nb + l)'DS
: = 04Dy + o) + (o + D-{(p-1)}D, + 1) £
) D -
Thus, TyD_ ) - TP = ng(- 37 ) + (ay + DD, - ) (14) -

Therefore, from Equation (14),
| D %
Lif (o, + l)-(Dm )< nd_I then T(Dm“) - 'Q(;T) < 0 and therefore,

-
T, < Tt(;_-;) b

2.0 (ny + 1D, - h = 0g{l/(p- 1)}, then T(D_, )= ( 7

m

D
3.if otherwise. T(D_ ) > Tt(FSI)‘

(QE.D.) ’

Proof : (Theorem 7) By Theorem 3 and Lemma 4, we know that
L6\

T, (tcy) = nd~tc’ + (nb ) q t 2 Dm“ (15) ? ‘
v, dg
t( )*ndcy+(nb+l) y‘qtydeu (16) o

L6)) () ¥p,Ps Ds 2

min(T! ) = min{T‘ (Dmu). Tt (Fi) }. where p [5——] (17) !
max .

T4 = miny T d__ )T Y4 here q = |43 18 v

min( T, ) = min{ A { ) ("'i” where q = a;‘—x (18) R
X

& |

Then. from Equations (15) and (17). |

b
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¥ § b Ds
} Tt (Dmu) = nd'Dmax + (, + 1) max Dpnax
:, 2 nd'Dmax + (ny, + ) 5max “max
iy ¥,
Y L 4
: # 2 "0 ) (19)
]
I ¥ D D,
D D,~S —_—n .
i N D dg Dg
> LP | + (nb + 1) D;(Pl) 1
IS ¥, D
B s o0 e
*
E: o ¥4 ¥4 95 . . b
b 2 CASE 1: If T.9d_ . ) < T, (;f), then, obviously from Equations (19) and (20) and by

i Lemma 5,

. ¥p V4 ¥4
o From Equation (19), T,"(D_ . ) 2 T,°(D_,) > T,%(d_,,) and
L,
] ¥ D ¥, D v
X from Equation (20), T,D(;Si) > nd(ﬁ) > 794,
Y .
L :4 v P 4
i ‘ Thus, min(TtD) > mm(Ttd)
o & CASE 2: If de d )2 de ds) then from Equations (15) and (16)
:: - . t ( max el t (q_j) n q 1 s '
e Ny ¥, d d D d
R TS =onggy+ (o + l)-{asi-(q-l)‘-;s{
: d d
i 7 > ngg+ (0, + Dagy
.
o 5 + (o, + 1)d
l .'t. > ndq—-T b S
B wd(‘.’_s.)
v o t 'g-l
g
' . ) Y
By Therefore, if Dm“ > dmu, min(T,~) > min(T, ") is always true. (QE.D)
. ‘ *
]
.
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Proof : (Lemma 8)
| P(1) | P(2) P(K-2) | P(X-1) I P(K) |
|==mme- |==f-=-- oo |==l====/ [o===|==oemm |=ee- |==|====="- l===1=--1
| ut vi | a2 v(k-2) lu(k-1) v(k-1) luk vk
=a(k-2)

As depicted above, let ui and vi be the left-most and right-most intervals (boundaries)
of i-th partition (for any MEG). By Lemma 1, the minimal length of the longest partition
is L. - In order to have a smaller k, at least the length of one of the partitions must be
increased and the boundaries be changed. Thus, at least one pair of vi and ufi+1) will

be in the same partition, say Pi (either Pi or P(i+1)). Then,

1. If we move u,_, into P, then ui must not remain in Pi in order not to

increase the maximal length of the partition, L_ .. Also, for the same reason,
ui cannot be absorbed into P(i-1) without partitioning P(i-1).

2. Also, for the same reason, going the opposite direction, Pi can only contain,
at most, up to interval v(i+1).

Thus the number of stages remains, at least, the same. By repeating the adjustment
according to the rules 1 and 2 until ul and vk are reached, we can see that the pumber

of partitions cannot be decreased. Therefore, k is minimal.

(QED)
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